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ABSTRACT
_;} A new iterative method is presented for solving finite difference
equations which approximate the steady Stokes equations. The method is an
extension of successive-over-relaxation and has two iteration parameters.
Perturbation methods are used to analyze the iteration matrix. Sufficient
conditions for the convergence of the iterative method are obtained and it is
shown that many reasonable finite difference schemes fqr the Stokes equations
satisfy these conditions. Computational examples are given to show the

. efficiency of the method.
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SIGNIFICANCE AND EXPLANATION

The incompressible Navier-Stokes equations describe the flow of many
common fluids. Thus effective numerical methods for solving these equations
are very important for many scientific and engineering applications. In this
paper a new algorithm is presented for solving finite difference equations for
the linearized Navier-Stokes equations. The method is similar to successive-
over-relaxation which is a widely used algorithm for solving elliptic
difference equations. Numerical results showing the behavior of the method
are presented. Other results appeared in an earlier report which discussed
finite difference schemes for the incompressible Navier-Stokes equations. The

method is efficient and easy to implement.
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8 .‘. AN ITERATIVE METHOD FOR SOLVING FINITE DIFFERENCE
_:“ APPROXIMATIONS TO THE STOKES EQUATIONS
: ‘ John C. Strikwerda
N
Vs 1. Introduction
ﬁi
R In this paper we present and analyze a new iterative method for solving
o finite difference approximations to the steady Stokes equations. The method
E:E is a variant of successive~over-relaxation (S.0.R.) and has similarities to
b~
o the method used by Chorin (1968) for the time-dependent Navier-Stokes
£ equations. The method described here is called extended successive-over-
fji relaxation (E.S5.0.R.) and is useful for solving the nonlinear incompressible

Navier-Stokes equations as well.

The Stokes equations are

¥ SRl tp?

PRCRINTN

o (1.1) in @ cr®
.2 =g
¥
el and we take as boundary conditions
” a=5 on 3m .
= The velocity ; is a vector of dimension k and the pressure p is a
ﬁa scalar. The system (1.1) requires k boundary conditions which can be either
L of Dirichlet type, as given above, or some other type.
:: A commonly used method for solving (1.1) is to replace the second
L%
. equation of (1.1), the divergence equation, by an elliptic equation for the
!
5 pressure. The resulting finite difference approximation can be solved by
g: iterative methods for elliptic equations, (e.g. Harlow and Welch (196S5),
gﬁ Roache (1972)). The difficulty with this approach is that solutions to the
IN .
% derived system need not be solutions of the original system (1.1) (see
'
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Strikwerda (1983), and Greenspan et al. (1964)). Therefore, we consider only
finite difference approximations to the system (1.1) in the form given there.

The finite difference approximation of (t1.1) results in matrix equations

of the form

A Gy 9, t
(1.2) -

b, © Py In
vhere the matrices -A;, G,, and D result from finite difference
approximations of the vector Laplacian, gradient, and divergence operators,
respectively. A, will be assumed to be a square n by n .natrix, G, an
n by =1 matrix, and D, an m+1 by n matrix. We will denote the
ntmt1 by n+m+1 matrix in (1.2) by 2,. Systems of the form (1.2) also
arise in solving the time-dependent Stokes and Navier-Stokes equations.

The equations (1.1) will not have a solution unless the integrability
condition
(1.3) ]ng = ]aag en
is satisfied. Similarly, the matrix Z, in (1.2) will, in general, be
singular, and the system (1.2) will not have a solution unless the data are
constrained to be orthogonal to the left null vectors of the matrix 2z,. We
will assume that the rank deficiency of Z, is only one, corresponding to the
one integrability condition (1.3).

Rather than constraining the data to be orthogonal to the left null
vector of %y, we prefer to consider both Pn and g9, as defined only up to
arbitrary additive constants. That is, they are elements of the vector
spaces lF*'/l, where the quotient space is defined by vy 2V, if vy = v

has all components equal. Considered this way, %, is an n+m by n+m non-

singular matrix. This approach to solving (1.1) is discussed in more detail

in section 4 of Strikwerda (1983).
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The E.S.0.R. algorithm discussed in this paper has been used to solve
several test problems involving the Stokes equations (Strikwerda (1983)) and
is being used by the author to solve for solutions of both the steady and time
dependent Navier—Stokes équntions. The method appears to be quite
efficient. Use of E.S.0.R. as a pre-conditioner for a conjugate gradient
algorithm is being investigated.

In the next section we will analyze a class of iterative methods for
systems of the form (1.2) and in section 3 we will discuss how the methods
behave as the mesh size varies. Several numerical examples which illustrate

the utility of the method are given in section 4.
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2. The Extended S.0.R. Method.

In this section we study a class of iterative methods to solve linear

systems of the form

(2.1) =

where A, G, and D are matrices of dimension n xn, nxm, and m x n,

respectively. We assume that the matrix

is non-singular, hence n 1is greater then or equal to m.

Systems of the form (2.1) often arise in the solution of constrained
optimization problems, indeed, the solution of the Stokes equations may be
regarded as the minimum of a quadratic functional under the constraint that
the divergence of u is specified. If m, the number of constraints, is
much smaller than n one can often eliminate m values of the unknown x
using the second row of equations in (2.1) and so obtain a system which can be
solved by standard methods, see ¢.g. Dyn and Ferguson (1982). If a cartesian
grid is used on a rectangular region one can use a special technique developed
by Amit, Hall, and Porsching (1980) to reduce the system to an n by n
system. We, however, will consider the case where m is quite large and
where there is not a natural or convenient way to reduce the system to one
involving only n equations in n variables.

The iterative methods we will discuss are extensions of successive-over-
relaxation (8.0.R.) as applied to the matrix A. We assume that A has been

transformed so that

A=I-~-L-0U
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where L and U are strictly lower and upper triangular matrices,
respectively. The S.0.R. iterative procedure applied to the system

Ax = a
is given by
(2.2) x\»1 = xv - m(xv - 1:.):"”'1 - va - a)
and we assume that this converges for w satisfying 0 < w < W for some
positive value of wb. For the basic theory of S.O.R. the reader is referred
to Young (1971), Assuming that (2.2) converges is equivalent to assuming the
following condition.

Condition 2.1

There is a positive constant W such that for 0 < w « ¥ the roots of

A+ w=1

(2.3) det ( ®

I-AL-U)=0
satisfy |A| < 1.
Por the full system (2.1) we consider the extended successive-over-

relaxation iterative procedure

I " LA A A TCAR SAGA Y
(2.4)
Yv+1 - Yv - Y(Doxv . D1xv+1 - 1)
where
Go + G1 = G
and

Dy + Dy =D .

The iterative parameters must be determined so that (2.4) is a convergent

algorithm. The purpose of the analysis in this section is to find conditions

under which (2.4) will converge.
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Chorin (1968) used a scheme similar to (2.4) to solve for the velocity

and pressure at each new time level for the time-dependent Navier-Stokes
equations. In Chorin's method the matrix A is essentially the identity
matrix and he set w to be 1.0 and G; and Do were zero.

We rewrite (2.4) in matrix form as

{(2.5) X 'v*1 =Xw +c
1 0
vhere
<’
v a
w = s C =
v
Y b
and
1
-“-,I-L G1
X, = ’
1
TD1 I
1-w
® I+U -Go
X = o
0
The method (2.5) will converge if and only if all the eigenvalues of x:‘xo
have absolute value less than one. The first result on the eigenvalues of
x?'xo is this lemma.
Lemma 2.1

For Y= 0 there are two classes of eigenvalues of x:'xo. There are

n eigenvalues which are roots of (2.3) and m simple eigenvalues all equal

to unity.
Proof
Let ) be an eigenvalue of x;'xo, then
-1 -1
0 = det(AI x1 xo) - det(xx1 - xo)det x1 .

~:':-:; At Y= 0 ’
O
=

R 6=

‘
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det x1 = mf“

80 X, is non-singular for small values of Y. We have

Mol - Uu A +C
w 1 0
(2.6) xx1 - xo - 0
Y()n)1 + od) (A=1)I

so at Y= 0 the eigenvalues of x"x are either roots of (2.3) or are

170
equal to unity. The eigenvalues equal to unity are easily seen to be simple

because A is non-singular. 1In fact, for any y € ® the vector

-A 1Gy)
Y
1s an eigenvector of X.'X_ at Y = 0. This proves Lemma 2.1.

170
The n eigenvalues of x;‘ 0

Y= 0 will be called the S.0.R. eigenvalues of x;'xo.

We will now study the perturbation expansion of the sigenvalues of

-1
21 Xo about Y= 0.

Theoren 2.1

which are equal to the roots of (2.3) at

Those eigenvalues A,(Y) of X.'X  such that A,(0) = 1 satisfy

b 10 3
(2.7) xj(y) =1 - njy + o(Y)
where nj is an eigenvalue of -DA”'G.

The proof of Theorem 2.1 depends on the following two lemmas.

Lemma 2,2

Let T(v) .bc an analytic matrix-valued function defined in a neighbor-
hood of Y= 0., If Ao is a simple eigenvalue of T(0) then the eigen-
values Aj(y) of T(Y) for which Aj(O) = xo
+ o(y) ,

satisfy

\j(Y) = *o + YU

is an. _,sav ae of T'(0).

3
vhere
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Lemma 2.3
If a, b, ¢, and d are matrices of dimension n xn, n xm, m x n,

and m x m, respectively, then

det(: :) = det(a - bd_1c) det 4, if det d # 0

= det(d - ca 'b) det a, if det a# 0 .

Proof of Lemma 2.2.
The proof easily follows from results of Kato (1966) but we give it here

for completeness. For Y near zero we can find a non-singular analytic

matrix valued function P(Yy) such that

P 'E(VIR(Y) = T(Y)

has a block form

where 5(0) = AOI. We now consider only ib(y). The eigenvalues of EO(Y)

have expansions as Puiseux series

- */p
A(n =%, + l AygY

=1

for some positive integer p. If p = 1, the result follows. Assume that

p> 1, we will show that for 1 < £ < p, Ajz is zero.
Let

uy(y) = Z “sz r gy A0

be the eigenvector corresponding to Aj(Y). (uj(y) does not have a pole at
= o - = T 2~ L X XN )
Yy=0 since TO(O) is diagonal.) Since To(y) AOI + yT°1 + v Toz +
and
To(v)uj(v) - uj(Y)kj(Y) .




we gee upon substituting the series for uj and Aj that sz = 0 for

1 < £ < p. Moreover for £ = p we have
T, - A Ju,. =0
@17 Y3p7%0
which shows further that Ajp is an eigenvalue of 51 and “jo is a
corresponding eigenvector. This proves Lemma 2.2.
Proof of Lemma 2.3.

The result follows easily from the matrix factorization

a b a-bilc ba’ : o
c d ) 0 I c 4
1 0 ia b

) ca-1 4 - ca-1b (0 I ]

Proof of Theorem 2.1.

Since the eigenvalues of x;‘xo which are equal to 1 for Y =0 are

simple, by Lemma 2.2 we have that

A = 1 - + 0 .
j('Y) an (v)

By Lenma 2.3 we have

0= det(ljx1 - xo) =

A+

“1)] - b o -
det((A.~-1)1 y(A D1+Do)( > I AjL u) (A G1 + Go))

3 3 3

A
. det(—j;——'l - AL - W

Now at Yy =0, Xj is 1, and A=I-1L - U is non-singular. So substi-

tuting the expansion for Xj(Y) we have

0 = Ymdet(-njl ~-pA G +o(y)) .

Hence 0, is an eigenvalue of -pa~1c and this proves Theorem 2.1.

3
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Since the iterative procedure (2.4) will be convergent only if the
eigenvalues of x;'xo are all less than one in magnitude, we see from Theorem
2.1 that for (2.4) to converge for positive values of Y we must assume that

the following condition holds.

Condition 2.2.

All the eigenvalues of -pA~ G  have positive real part.

Note that if all eigenvalues of -DA"G have negative real part, then
one can either multiply the last m equation of (2.1) by negative one (i.e.
replace D by -D) or, equivalently take Y to be negative. If, however,
some of the eigenvalues of -pa~ 16 have positive real part and others have
negative real part then the method will not converge.

We now state the main result of this section.
Theorem 2.3

Conditions 2.1 and 2.2 are sufficient for the algorithm (2.4) to converge
for vy and w satisfying 0 < y < 70 and 0 < w < w, for some positive

0

values of Yo and wb. Furthermore, if A is non-singular then necessary
conditions for (2.4) to converge for such Y and w are that the roots of
(2.3) satisfy |A] < 1 and that the eigenvalues of -pa~'G have non-negative
real part.
Proof

Consider the two groups of eigenvalues described in Lemma 2.1. By
continuity of the eigenvalues as functions of the matrix elements we have that
the 8.0.R. eigenvalues satisfy |A] <1 for Yy in some range 0 < y < Yo
for 0 < w < w. . Then by Theorem 2.1 and Condition 2.2 the remaining eigen-

0

values of x?'xo also satisfy [A] <1 for 0 < y < Yo for some (Y This

proves the sufficiency condition.

T S T R . LT WPU S P




%: If the algorithm (2.4) converges for 0 < y < Yo and 0 < w < wb, then

for Y= 0 the eigenvalues of x;'xo must satisfy [A] < 1. Since A is

L8

non-singular the S.0.R. eigenvalues of x?‘xo are not equal to 1 for

Y= 0. Thus the non-S.0.R. eigenvalues are simple and satisfy (2.7). The

FRaS o |

i Y 'Y

4, oy iy by <y

condition that |A] < 1 for small positive Y implies that Re “j > 0.
We conclude this section by obtaining expressions for the perturbation of

oo the S.0.R. eigenvalues of the iteration matrix for the case where A is

diagonalizable and has property A. Under these conditions the iteration
= matrix for S.O.R. applied to A has principle vectors of grade at most two,
o (Young (1971) p. 233-238).

Now let Ajo be a simple S.0.R. eigenvalue for x;‘xo at y=0 and

let
%50 %31

+ 0(Y)
. 3 0

+ v
Py

be the perturbation expansion of a right eigenvector of xI'xo with eigen~

o value '

(2.8) A, = A, + YA

3 30 +o0(y) »

31
Let

Vjo
3 0

£?

be a left eigenvector at y = 0 such that
(Vjo,ujo) * 0 .
Substituting the above expansions for the eigenvector and eigenvalue in the

equation

(wj,xow ) = A (w ,x1vj)

b b
we obtain

(v oo(G°+X )

;‘ A aay 40%1P44
g 3 I-L)u

(v

1
joo(; jo)

-11=
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:' Since vy is an eigenvector of x}'xo, we have
i -1
. Pyq (1 Ajo) (Do + Aj0D1)“jo
'_.:: and also
i::j: (1 - on)(llm I - L)ujo = Aujo
x hence

(2.9) x - (Vioc(Go+l:L°G1)(Do+AJoD1 ’“30)
- I (vjo.Aujo)
-:\ *
3 Similarly, if Aj1 is an S.0.R. eigenvalue of grade 2 at Y = 0, then we

have
a2 * * 1 .
N 2.10) A, =), +Yer 4 +0
2 where
. +A. A*

(2.11) 0y ,/2) - - T

0% Y,
and u% is defined by
AL+
+u=

X i [ Y T 1. -
R (~=—1 Al = Dlug, ¢ (G IT-Lluyy = 0 .

--------

.......
-
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3. The rinite Difference Stokes Equations.

In this section we consider the application of the iterative method (2.4)
to finite Adifference approximations of the Stokes ejuations. We first
consider Conditions 2.1 and 2.2 to see if they are satisfied.

Since the matrix A arises from a discretization of the vector
Lsplacian, Condition 2.1 is very reasonable. If the finite difference grid is
rectangular with uniform spacing and one uses the standard five-point
discretization for the Laplacian, then Condition 2.1 is satisfied, Young
(1971). 1In addition, A will be symmetric and have Property A, (Young
(1971)).

Condition 2.2 will also be satisfied for appropriate difference
schemes. The operator (, represented by <D A G is a finite difference

h h h
approximation to the operator Q, defined on L (Q)/R as follows.

Qopsq if
gq=% 0
where Vz ; = ﬁp in @
rs
with u=0 on 3IQ .

Crozier (1974) has proved the following:

Theorem 3.1

If Q@ is a connected, bounded domain in R? with smooth boundary then
the operator 2 is a bounded, positive definite operator on LZ(Q)/R.

Therefore, if On 1s a consistent approximation to Qp one can expect
that the next condition holds.
Condition 3.1,

There are positive constants ¢y and c, such that for 0 < h < ho,

(3.1) ¢, CRen

1 <Ini|<c

i 2

where the ni are ags in Theorem 2.1.

-13-

T N N T L W Y W Y N I e e ¥ W T Y W T T T YT T i T ST s~ -
B e . w - . - . S - - [N . ... q




P AR I S S g ~‘."':T_‘.!-"‘;"’:‘t.“.‘_‘\ Ml D'e Benn s e 3 on g -.-—-"w.“-‘vx IR SR ARCACRE ASCI

It is important to note that Condition 3.1 is not satisfied for all

'\ finite difference schemes. In particular, if one uses standard central

:__: difference to approximate both the gradient of the pressure and the divergence
‘:S' of the velocity, then numerical tests indicate that Condition 3.1 is not

\: satisfied. 1In section 4, we will discuss difference schemes which satisfy
N Condition 3.1. Condition 3.1 is related to the regularity of the difference
scheme (Bube and Strikwerda, 1983). Regular difference schemes are those
whose solutions satisfy regularity estimates analogous to those satisfied by
).\ solutions of the differential equation.

‘:\ We now consider the convergence bshavior of the E.S.0.R. msthod. Suppose
:': then that one has a finite difference approximatien to the Stokes equations
: (1.2) for which the method (2.6) will converge for some positive values of Y
. and . One would like to know how to choose values of @ and Y 8o as to
obtain a good rate of convergence for the method. We are unable to give

.:::; rigorous estimates of the convergence rate, but we will now show that the

'.t: following conjecture is quite plausible.

: Conjecture 3.1

f':}} If the matrix A satisfies property A and Condition 3.1 is satisfied
S::: then there are positive constants Cco and Cq4 such that for w = 2/(1+c°h)
::‘ and y = c1h then

(3.2) p(X;'%)) = 1 = Kh + 0(h)

. for some positive constant K.

‘ Since the iteration matrix for S8.0.R. applied to the discrete five point

Laplacian satisfies a relation like (3.2), Conjecture 3.1, if true, shows that

E.8.0.R. for the Stokes equations is roughly as efficient as S.0.R. for the

five point Laplacian.




.....

We argue for the Conjecture 3.1 as follows. If A satisfies Property A
* *
then for w » w, where w is the optimal parameter for (2.2), and small
positive values of Yy, the S.0.R. eigenvalues satisfy (2.8) or (2.10) and

have modulus w-1 + 0(Y). Consider first those ) which are near o - 1,

30
that is, A has the form
jo
1th
on ~(w1)e

where Oj = (1) and w=2 + (0(h) as h tends to zero. If the finite

difference approximations for the divergence and gradient are consistent then

(2.9) can be approximated by

2
D

y ] h\ljl
31

(“j' A “j)

since the adjoint of the gradient is the negative of the divergence and where
A is the finite difference negative Laplacian, i.e. without the normal-
ization which makes the diagonal elements unity. The diacrete eigenvector

uy may be regarded as a representation of smooth vector function 3 and so

the above ratio is approximated as
> 2
div u

A ~
lgraa a}?

41

and so Aj1 is (0(1) as h tends to zerc.
On the other extreme where on is close to =-(w-1) the discrete

eigenvector uy is a very oscillatory function. Then we have

-1
(D.+X. D )“jo =0(h )

0 730 1
(Goﬂjoc;‘) = 0(h)
and
A\ljo = (x‘)

and thus Aj1 is again ((1) as h tends to sgero.

-15=
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C For other values of Ajo on the circle with radius w - 1, an argument

similar to those above shows that Aj1 will be bounded as h tends to

zero. For A as in (2.10) and (2.11), the conclusion is that Ajt@ is
’

jl1/2 1
proportional to h/2 as h tends to zero.

e LI ML)
LA

Pl L

XY

)
aa

¥ Therefore if Yy is taken proportional to h in (2.8) and (2.10) and we

) assume that the terms which are 0(y) in (2.8) and (Yy) in (2.10) become
X 0o(h) and O(h), respectively, we then obtain (3.2). This last assumption is
the one for which we have no theoretical justification. It is not

SRk unreasonable, however, and the numerical experiments confirm that Conjecture

)

)
I S
Tt

3.1 is quite plausible.
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4. Numerical Examples

;" In this section we present some numerical results of using the E.S.0.R.
’ algorithm on a test problem. We consider the Stokes squations

‘._'j , x

)

5 (4.1) Vzv P 0

Ju v _ -

'f? o + Ew gi{x,y) CO8 W X COS W Y

v, on 0 < x,y €1 with u and v specified on the boundary. The exact

;3 solution is given by

v

= u=(2l)1linlxcoany
N »

v = (2%) cos % x gsin w y

" P=cos TXxXcos vty .

The discretization used a uniform grid with the same number of grid

T2

f points in each direction. The second~order accurate five-point Laplacian was
ugsed to approximate the Laplacian. As mentioned in section 3 the choice of

discretization for the gradient and divergence terms is crucial to satisfy

::: Condition 3.1. We employed here the regularized centered differences

N (Strikwerda (1983)) given by

z % 12 2

x 6xl:bp 6 h Cx_S”p ’

K

Boag 1,2 &

" -=h" 6 &

3 ay  yoP T Cy-CyeP

2 du 1.2 2

x 6x()u s 6x+6x-“ ’

- v 1.2 2

,.:.' o ~6y°v g h 6¥+6y_v '

N

by where h is the grid spacing and § %0 ! é b’ and 6x_ are the centered,
>

» forward, and backward difference operators in the x-direction. The operators
v
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8 and 6y_ are defined similarly for the y-direction. To determine

yo! Sy+!
the pressure at boundary points a cubic interpolatier was used, e.qg.
P13 = 3(P2y = P3y) = Pgy -
In these tests the difference operators D and G, were zero, i.e.
Dy = D, Gy = G. This is perhaps the easiest scheme to implement of those
congsidered here. Note that for the theory developed in section 2 it is
necessary that the difference operators G, and Gqs together with G,

annihilate constants so that they are defined on IP*‘/I. This scheme has

been shown to be second-order accurate, Strikwerda (1983). Here we give

ittt

: results only on the efficiency of the solution algorithm, ESOR.

Vot ey
R 4

u To support the conjecture 3.1, several runs were made where w and Y
o were given by
o
< w=2/(1 + c h)
2N (4.1)
Y = c‘h

for several values of Cor C4 and h. The iterative method was stopped when
the quantities
1
+ +
W™ - W ™ e 2

1
L (4.2) W oV vt e 12

1
'pn+1 - pnl / "pn+1'2 . "/2

- were all less than 1072, The norms for u and v in (4.2) were the

E discrete 12 norms, and the norm for p was the 2 norm in the quotient

; space IP+1/R. The computation of the norm in the quotient space will be

%; discusgsed later. If Conjecture 3.1 were valid then the product of I, the

number of iterations required for convergence, and h would tend to a limit
as h tends to zero. To see this we obgserve that if the spectral radius is

1 - Xh then the number of iterations required for the relative change in

successive iterates to he less than € is determined hy
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1- This implies
o (4.3) hI =~ -(log €)/K .
:; . The results of these runs are shown in Table 1.
The results in Table 1 for ¢, = 5.0 and c4 = 5.0 give excellent
ﬁ: agreement with Conjecture 3.1. The variation in the values of he*l for other
ﬂ values of S and c4 can be explained by the presence of the 0(h) term in
| (3.2) and because the use of the norms is only an imperfect indicator of the
§ spectral radius.
i We now discuss the computation of the norms for the quotient spaces
b :
. lP"/l. If X is a vector in W'! then the 1L? norm of its image in
L wlm s
*
N 2
: m-()j x, - %)?)
) k=1
; where x is the mean of X, 1i.e.
6 m+1
o] ~ 1
"d X = —— 2 X .
! mt1 k=1 k
i An efficient and accurate way to compute this norm is the algorithm of West
. (1979). This can be described as follows
3 Initialize k = 1
-
y My = X
'j N1 = 0
4
. repeat for K = 2,00e,mt1
[ 3
2 R =X = My
f U = R/k
"k = "k-‘l + U
Ny =Ny + R* U (k=1)
%
s

=19~
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Table 1

CO 01 h I hel

5.0 5.0 1/20 163 8.2
1.30 246 8.2
1/40 329 8.2
1760 497 8.3
1/80 666 8.3

4.9 5.0 1.20 141 7.1
1/30 219 7.3
1/40 298 7.5
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finally

This algorithm is stable as shown by Chan and Lewis (1979), and is very
convenient. This is used to compute the norm of the pressure and the residual
of the last equation in the Stokes equations.

The mean of the residual of the divergence equation is the quantity Gh
discussed in Strikwerda (1983), and for each of the cases reported here it was
on the order of the truncation error.

The E.S.0.R. method described here was used to compute the solutions
discussed in Strikwerda (1983) where acdurate finite difference schemes for
the Stokes equations are described. It is also being used in the computation
of Taylor vortex solutions to the steady Navier-Stokes equations and in
computations of solutions of the time-dependent Navier-Stokes equations. The
results of this research will be reported when it is completed. It has been
found to be a reliable algorithm, the main difficulty being the choice of
w and Y. Conjecture 3.1 provides a means of estimating good values of
w and Y. By finding good values of ®w and Yy for, say, h = 1/10, one
can then use Conjecture 3.1 to obtain good estimates of w and Y for

smaller values of h.
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5. Conclusion

The E.S.0.R. method has been rigorously analyzed for matrices of the form
(2.1) with the main results stated in Theorem 2.3. For the particular case of
difference approximations to the Stokes equations we have arqued in section 3
that the assumptions required by Theorem 2.3 are reasonable for many finite
difference schemes. The results of section 4 have confirmed that the E.S.0.R.
method is indeed an efficient algorithm for the solution of the finite

difference Stokes equations.
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